The physiological theory of fermentation, by Louis Pasteur

III. Reply to Certain Critical Observations of the German Naturalists, Oscar Brefeld and Moritz Traube.

The essential point of the theory of fermentation which we have been concerned in proving in the preceding paragraphs may be briefly put in the statement that ferments properly so called constitute a class of beings possessing the faculty of living out of contact with free oxygen; or, more concisely still, we may say that fermentation is a result of life without air.

If our affirmation were inexact, if ferment cells did require for their growth or for their increase in number or weight, as all other vegetable cells do, the presence of oxygen, whether gaseous or held in solution in liquids, this new theory would lose all value, its very raison d’etre would be gone, at least as far as the most important part of fermentations is concerned. This is precisely what M. Oscar Brefeld has endeavoured to prove in a Memoir read to the Physico–Medical Society of Wurzburg on July 26th, 1873, in which, although we have ample evidence of the great experimental skill of its author, he has nevertheless, in our opinion, arrived at conclusions entirely opposed to fact.

“From the experiments which I have just described,” he says, “it follows, in the most indisputable manner, that A FERMENT CANNOT INCREASE WITHOUT FREE OXYGEN. Pasteur’s supposition that a ferment, unlike all other living organisms, can live and increase at the expense of oxygen held in combination, is, consequently, altogether wanting in any solid basis of experimental proof. Moreover, since, according to the theory of Pasteur, it is precisely this faculty of living and increasing at the expense of the oxygen held in combination that constitutes the phenomenon of fermentation, it follows that the whole theory, commanding though it does such general assent, is shown to be untenable; it is simply inaccurate.”

The experiments to which Dr. Brefeld alludes, consisted in keeping under continued study with the microscope, in a room specially prepared for the purpose, one or more cells of ferment in wort in an atmosphere of carbonic acid gas free from the least traces of free oxygen. We have, however, recognized the fact that the increase of a ferment out of contact with air is only possible in the case of a very young specimen; but our author employed brewer’s yeast taken after fermentation, and to this fact we may attribute the non-success of his growths. Dr. Brefeld, without knowing it, operated on yeast in one of the states in which it requires gaseous oxygen to enable it to germinate again. A perusal of what we have previously written on the subject of the revival of yeast according to its age will show how widely the time required for such revival may vary in different cases. What may be perfectly true of the state of a yeast today may not be so tomorrow, since yeast is continually undergoing modifications. We have already shown the energy and activity with which a ferment can vegetate in the presence of free oxygen, and we have pointed out the great extent to which a very small quantity; of oxygen held in solution in fermenting liquids can operate at the beginning of fermentation. It is this oxygen that produces revival in the cells of the ferment and enables them to resume the faculty of germinating and continuing their life, and of multiplying when deprived of air.

In our opinion, a simple reflection should have guarded Dr. Brefeld against the interpretation which he has attached to his observations. If a cell of ferment cannot bud or increase without absorbing oxygen, either free or held in solution in the liquid, the ratio between the weight of the ferment formed during fermentation and that of oxygen used up must be constant. We had, however, clearly established, as far back as 1861, the fact that this ratio is extremely variable, a fact, moreover, which is placed beyond doubt by the experiments described in the preceding section. Though but small quantities of oxygen are absorbed, a considerable weight of ferment may be generated; whilst if the ferment has abundance of oxygen at its disposal, it will absorb much, and the weight of yeast formed will be still greater. The ratio between the weight of ferment formed and that of sugar decomposed may pass through all stages within certain very wide limits, the variations depending on the greater or less absorption of free oxygen. And in this fact, we believe, lies one of the most essential supports of the theory which we advocate. In denouncing the impossibility, as he considered it, of a ferment living without air or oxygen, and so acting in defiance of that law which governs all living beings, animal or vegetable, Dr. Brefeld ought also to have borne in mind the fact which we have pointed out, that alcoholic yeast is not the only organized ferment which lives in an anaerobian state. It is really a small matter that one more ferment should be placed in a list of exceptions to the generality of living beings, for whom there is a rigid law in their vital economy which requires for continued life a continuous respiration, a continuous supply of free oxygen. Why, for instance, has Dr. Brefeld omitted the facts bearing on the life of the vibrios of butyric fermentation? Doubtless he thought we were equally mistaken in these: a few actual experiments would have put him right.

These remarks on the criticisms of Dr. Brefeld are also applicable to certain observations of M. Moritz Traube’s, although, as regards the principal object of Dr. Brefeld’s attack, we are indebted to M. Traube for our defence. This gentleman maintained the exactness of our results before the Chemical Society of Berlin, proving by fresh experiments that yeast is able to live and multiply without the intervention of oxygen. “My researches,” he said, “confirm in an indisputable manner M. Pasteur’s assertion that the multiplication of yeast can take place in media which contain no trace of free oxygen. . . . M. Brefeld’s assertion to the contrary is erroneous.” But immediately afterwards M. Traube adds: “Have we here a confirmation of Pasteur’s theory? By no means. The results of my experiments demonstrate on the contrary that this theory has no true foundation.” What were these results? Whilst proving that yeast could live without air, M. Traube, as we ourselves did, found that it had great difficulty in living under these conditions; indeed he never succeeded in obtaining more than the first stages of true fermentation. This was doubtless for the two following reasons: first, in consequence of the accidental production of secondary and diseased fermentations which frequently prevent the propagation of alcoholic ferment; and, secondly, in consequence of the original exhausted condition of the yeast employed. As long ago as 1861, we pointed out the slowness and difficulty of the vital action of yeast when deprived of air; and a little way back, in the preceding section, we have called attention to certain fermentations that cannot be completed under such conditions without going into the causes of these peculiarities. M. Traube expresses himself thus: “Pasteur’s conclusion, that yeast in the absence of air is able to derive the oxygen necessary for its development from sugar, is erroneous; its increase is arrested even when the greater part of the sugar still remains undecomposed. IT IS IN A MIXTURE OF ALBUMINOUS SUBSTANCES THAT YEAST, WHEN DEPRIVED OF AIR, FINDS THE MATERIALS FOR ITS DEVELOPMENT.” This last assertion of M. Traube’s is entirely disproved by those fermentation experiments in which, after suppressing the presence of albuminous substances, the action, nevertheless, went on in a purely inorganic medium, out of contact with air, a fact, of which we shall give irrefutable proofs. 25

25 Traube’s conceptions are governed by a theory of fermentation entirely his own, a hypothetical one, as he admits, of which the following is a brief summary: “We have no reason to doubt,” Traube says, “that the protoplasm of vegetable cells is itself, or contains within it, a chemical ferment which causes the alcoholic fermentation of sugar; its efficacy seems closely connected with the presence of the cell, inasmuch as, up to the present time, we have discovered no means of isolating it from the cells with success. In the presence of air this ferment oxidizes sugar by bringing oxygen to bear upon it; in the absence of air it decomposes the sugar by taking away oxygen from one group of atoms of the molecule of sugar and bringing it to act upon other atoms; on the one hand yielding a product of alcohol by reduction, on the other hand a product of carbonic acid gas by oxidation.”

Traube supposes that this chemical ferment exists in yeast and in all sweet fruits, but only when the cells are intact, for he has proved for himself that thoroughly crushed fruits give rise to no fermentation whatever in carbonic acid gas. In this respect this imaginary chemical ferment would differ entirely from those which we call SOLUBLE FERMENTS, since diastase, emulsine, &c., may be easily isolated.

For a full account of the views of Brefeld and Traube, and the discussion which they carried on on the subject of the results of our experiments, our readers may consult the Journal of the Chemical Society of Berlin, vii., p. 872. The numbers for September and December, 1874, in the same volume, contain the replies of the two authors.

Last updated Thursday, March 6, 2014 at 16:24