Elements of Chemistry, by Antoine Lavoisier

Chapter II.

General Views relative to the Formation and Composition of our Atmosphere.

These views which I have taken of the formation of elastic aëriform fluids or gasses, throw great light upon the original formation of the atmospheres of the planets, and particularly that of our earth. We readily conceive, that it must necessarily consist of a mixture of the following substances: First, Of all bodies that are susceptible of evaporation, or, more strictly speaking, which are capable of retaining the state of aëriform elasticity in the temperature of our atmosphere, and under a pressure equal to that of a column of twenty-eight inches of quicksilver in the barometer; and, secondly, Of all substances, whether liquid or solid, which are capable of being dissolved by this mixture of different gasses.

The better to determine our ideas relating to this subject, which has not hitherto been sufficiently considered, let us, for a moment, conceive what change would take place in the various substances which compose our earth, if its temperature were suddenly altered. If, for instance, we were suddenly transported into the region of the planet Mercury, where probably the common temperature is much superior to that of boiling water, the water of the earth, and all the other fluids which are susceptible of the gasseous state, at a temperature near to that of boiling water, even quicksilver itself, would become rarified; and all these substances would be changed into permanent aëriform fluids or gasses, which would become part of the new atmosphere. These new species of airs or gasses would mix with those already existing, and certain reciprocal decompositions and new combinations would take place, until such time as all the elective attractions or affinities subsisting amongst all these new and old gasseous substances had operated fully; after which, the elementary principles composing these gasses, being saturated, would remain at rest. We must attend to this, however, that, even in the above hypothetical situation, certain bounds would occur to the evaporation of these substances, produced by that very evaporation itself; for as, in proportion to the increase of elastic fluids, the pressure of the atmosphere would be augmented, as every degree of pressure tends, in some measure, to prevent evaporation, and as even the most evaporable fluids can resist the operation of a very high temperature without evaporating, if prevented by a proportionally stronger compression, water and all other liquids being able to sustain a red heat in Papin's digester; we must admit, that the new atmosphere would at last arrive at such a degree of weight, that the water which had not hitherto evaporated would cease to boil, and, of consequence, would remain liquid; so that, even upon this supposition, as in all others of the same nature, the increasing gravity of the atmosphere would find certain limits which it could not exceed. We might even extend these reflections greatly farther, and examine what change might be produced in such situations upon stones, salts, and the greater part of the fusible substances which compose the mass of our earth. These would be softened, fused, and changed into fluids, &c.: But these speculations carry me from my object, to which I hasten to return.

By a contrary supposition to the one we have been forming, if the earth were suddenly transported into a very cold region, the water which at present composes our seas, rivers, and springs, and probably the greater number of the fluids we are acquainted with, would be converted into solid mountains and hard rocks, at first diaphanous and homogeneous, like rock crystal, but which, in time, becoming mixed with foreign and heterogeneous substances, would become opake stones of various colours. In this case, the air, or at least some part of the aëriform fluids which now compose the mass of our atmosphere, would doubtless lose its elasticity for want of a sufficient temperature to retain them in that state: They would return to the liquid state of existence, and new liquids would be formed, of whose properties we cannot, at present, form the most distant idea.

These two opposite suppositions give a distinct proof of the following corollaries: First, That solidity, liquidity, and aëriform elasticity, are only three different states of existence of the same matter, or three particular modifications which almost all substances are susceptible of assuming successively, and which solely depend upon the degree of temperature to which they are exposed; or, in other words, upon the quantity of caloric with which they are penetrated8. 2dly, That it is extremely probable that air is a fluid naturally existing in a state of vapour; or, as we may better express it, that our atmosphere is a compound of all the fluids which are susceptible of the vaporous or permanently elastic state, in the usual temperature, and under the common pressure. 3dly, That it is not impossible we may discover, in our atmosphere, certain substances naturally very compact, even metals themselves; as a metallic substance, for instance, only a little more volatile than mercury, might exist in that situation.

Amongst the fluids with which we are acquainted, some, as water and alkohol, are susceptible of mixing with each other in all proportions; whereas others, on the contrary, as quicksilver, water, and oil, can only form a momentary union; and, after being mixed together, separate and arrange themselves according to their specific gravities. The same thing ought to, or at least may, take place in the atmosphere. It is possible, and even extremely probable, that, both at the first creation, and every day, gasses are formed, which are difficultly miscible with atmospheric air, and are continually separating from it. If these gasses be specifically lighter than the general atmospheric mass, they must, of course, gather in the higher regions, and form strata that float upon the common air. The phenomena which accompany igneous meteors induce me to believe, that there exists in the upper parts of our atmosphere a stratum of inflammable fluid in contact with those strata of air which produce the phenomena of the aurora borealis and other fiery meteors. — I mean hereafter to pursue this subject in a separate treatise.

8 The degree of pressure which they undergo must be taken into account. E.

http://ebooks.adelaide.edu.au/l/lavoisier/antoine_laurent/elements/chapter2.html

Last updated Friday, March 7, 2014 at 22:36