on the Natural Faculties, by Galen

Book Two

1. In the previous book we demonstrated that not only Erasistratus, but also all others who would say anything to the purpose about urinary secretion, must acknowledge that the kidneys possess some faculty which attracts to them this particular quality existing in the urine. Besides this we drew attention to the fact that the urine is not carried through the kidneys into the bladder by one method, the blood into parts of the animal by another, and the yellow bile separated out on yet another principle. For when once there has been demonstrated in any one organ, the drawing, or so-called epispastic faculty, there is then no difficulty in transferring it to the rest. Certainly Nature did not give a power such as this to the kidneys without giving it also to the vessels which abstract the biliary fluid,7 nor did she give it to the latter without also it to each of the other parts. And, assuredly, if this is true, we must marvel that Erasistratus should make statements concerning the delivery of nutriment from the food-canal which are so false as to be detected even by Asclepiades. Now, Erasistratus considers it absolutely certain that, if anything flows from the veins, one of two things must happen: either a completely empty space will result, or the contiguous quantum of fluid will run in and take the place of that which has been evacuated. Asclepiades, however, holds that not one of two, but one of three things must be said to result in the emptied vessels: either there will be an entirely empty space, or the contiguous portion will flow in, or the vessel will contract. For whereas, in the case of reeds and tubes it is true to say that, if these be submerged in water, and are emptied of the air which they contain in their lumens, then either a completely empty space will be left, or the contiguous portion will move onwards; in the case of veins this no longer holds, since their coats can collapse and so fall in upon the interior cavity. It may be seen, then, how false this hypothesis — by Zeus, I cannot call it a demonstration! — of Erasistratus is.

And, from another point of view, even if it were true, it is superfluous, if the stomach has the power of compressing the veins, as he himself supposed, and the veins again of contracting upon their contents and propelling them forwards. For, apart from other considerations, no plethora would ever take place in the body, if delivery of nutriment resulted merely from the tendency of a vacuum to become refilled. Now, if the compression of the stomach becomes weaker the further it goes, and cannot reach to an indefinite distance, and if, therefore, there is need of some other mechanism to explain why the blood is conveyed in all directions, then the principle of the refilling of a vacuum may be looked on as a necessary addition; there will not, however, be a plethora in any of the parts coming after the liver, or, if there be, it will be in the region of the heart and lungs; for the heart alone of the parts which come after the liver draws the nutriment into its right ventricle, thereafter sending it through the arterioid vein8 to the lungs (for Erasistratus himself will have it that, owing to the membranous excrescences, no other parts save the lungs receive nourishment from the heart). If, however, in order to explain how plethora comes about, we suppose the force of compression by the stomach to persist indefinitely, we have no further need of the principle of the refilling of a vacuum, especially if we assume contraction of the veins in addition — as is, again, agreeable to Erasistratus himself.

2. Let me draw his attention, then, once again, even if he does not wish it, to the kidneys, and let me state that these confute in the very clearest manner such people as object to the principle of attraction. Nobody has ever said anything plausible, nor, as we previously showed, has anyone been able to discover, by any means, any other cause for the secretion of urine; we necessarily appear mad if we maintain that the urine passes into the kidneys in the form of vapour, and we certainly cut a poor figure when we talk about the tendency of a vacuum to become refilled; this idea is foolish in the case of blood, and impossible, nay, perfectly nonsensical, in the case of the urine.

This, then, is one blunder made by those who dissociate themselves from the principle of attraction. Another is that which they make about the secretion of yellow bile. For in this case, too, it is not a fact that when the blood runs past the mouths [stomata] of the bile-ducts there will be a thorough separation out [secretion] of biliary waste-matter. “Well,” say they, “let us suppose that it is not secreted but carried with the blood all over the body.” But, you sapient folk, Erasistratus himself supposed that Nature took thought for the animals’ future, and was workmanlike in her method; and at the same time he maintained that the biliary fluid was useless in every way for the animals. Now these two things are incompatible. For how could Nature be still looked on as exercising forethought for the animal when she allowed a noxious humour such as this to be carried off and distributed with the blood? . . .

This, however, is a small matter. I shall again point out here the greatest and most obvious error. For if the yellow bile adjusts itself to the narrower vessels and stomata, and the blood to the wider ones, for no other reason than that blood is thicker and bile thinner, and that the stomata of the veins are wider and those of the bile-ducts narrower, then it is clear that this watery and serous superfluity,9 too, will run out into the bile-ducts quicker than does the bile, exactly in proportion as it is thinner than the bile! How is it, then, that it does not run out? “Because,” it may be said, “urine is thicker than bile!” This was what one of our Erasistrateans ventured to say, herein clearly disregarding the evidence of his senses, although he had trusted these in the case of the bile and blood. For, if it be that we are to look on bile as thinner than blood because it runs more, then, since the serous residue9 passes through fine linen or lint or a or a sieve more easily even than does bile, by these tokens bile must also be thicker than the watery fluid. For here, again, there is no argument which will demonstrate that bile is thinner than the serous superfluities.

But when a man shamelessly goes on using circumlocutions, and never acknowledges when he has had a fall, he is like the amateur wrestlers, who, when they have been overthrown by the experts and are lying on their backs on the ground, so far from recognizing their fall, actually seize their victorious adversaries by the necks and prevent them from getting away, thus supposing themselves to be the winners!

3. Thus, every hypothesis of channels as an explanation of natural functioning is perfect nonsense. For, if there were not an inborn faculty given by Nature to each one of the organs at the very beginning, then animals could not continue to live even for a few days, far less for the number of years which they actually do. For let us suppose they were under no guardianship, lacking in creative ingenuity and forethought; let us suppose they were steered only by material forces, and not by any special faculties (the one attracting what is proper to it, another rejecting what is foreign, and yet another causing alteration and adhesion of the matter destined to nourish it); if we suppose this, I am sure it would be ridiculous for us to discuss natural, or, still more, psychical, activities — or, in fact, life as a whole.

For there is not a single animal which could live or endure for the shortest time if, possessing within itself so many different parts, it did not employ faculties which were attractive of what is appropriate, eliminative of what is foreign, and alterative of what is destined for nutrition. On the other hand, if we have these faculties, we no longer need channels, little or big, resting on an unproven hypothesis, for explaining the secretion of urine and bile, and the conception of some favourable situation (in which point alone Erasistratus shows some common sense, since he does regard all the parts of the body as having been well and truly placed and shaped by Nature).

But let us suppose he remained true to his own statement that Nature is “artistic”— this Nature which, at the beginning, well and truly shaped and disposed all the parts of the animal, and, after carrying out this function (for she left nothing undone), brought it forward to the light of day, endowed with certain faculties necessary for its very existence, and, thereafter, gradually increased it until it reached its due size. If he argued consistently on this principle, I fail to see how he can continue to refer natural functions to the smallness or largeness of canals, or to any other similarly absurd hypothesis. For this Nature which shapes and gradually adds to the parts is most certainly extended throughout their whole substance. Yes indeed, she shapes and nourishes and increases them through and through, not on the outside only. For Praxiteles and Phidias and all the other statuaries used merely to decorate their material on the outside, in so far as they were able to touch it; but its inner parts they left unembellished, unwrought, unaffected by art or forethought, since they were unable to penetrate therein and to reach and handle all portions of the material. It is not so, however, with Nature. Every part of a bone she makes bone, every part of the flesh she makes flesh, and so with fat and all the rest; there is no part which she has not touched, elaborated, and embellished. Phidias, on the other hand, could not turn wax into ivory and gold, nor yet gold into wax: for each of these remains as it was at the commencement, and becomes a perfect statue simply by being clothed externally in a form and artificial shape. But Nature does not preserve the original character of any kind of matter; if she did so, then all parts of the animal would be blood — that blood, namely, which flows to the semen from the impregnated female and which is, so to speak, like the statuary’s wax, a single uniform matter, subjected to the artificer. From this blood there arises no part of the animal which is as red and moist [as blood is], for bone, artery, vein, nerve, cartilage, fat, gland, membrane, and marrow are not blood, though they arise from it.

I would then ask Erasistratus himself to inform me what the altering, coagulating, and shaping agent is. He would doubtless say, “Either Nature or the semen,” meaning the same thing in both cases, but explaining it by different devices. For that which was previously semen, when it begins to procreate and to shape the animal, becomes, so to say, a special nature. For in the same way that Phidias possessed the faculties of his art even before touching his material, and then activated these in connection with this material (for every faculty remains inoperative in the absence of its proper material), so it is with the semen: its faculties it possessed from the beginning,10 while its activities it does not receive from its material, but it manifests them in connection therewith.

And, of course, if it were to be overwhelmed with a great quantity of blood, it would perish, while if it were to be entirely deprived of blood it would remain inoperative and would not turn into a nature. Therefore, in order that it may not perish, but may become a nature in place of semen, there must be an afflux to it of a little blood — or, rather, one should not say a little, but a quantity commensurate with that of the semen. What is it then that measures the quantity of this afflux? What prevents more from coming? What ensures against a deficiency? What is this third overseer of animal generation that we are to look for, which will furnish the semen with a due amount of blood? What would Erasistratus have said if he had been alive, and had been asked this question? Obviously, the semen itself. This, in fact, is the artificer analogous with Phidias, whilst the blood corresponds to the statuary’s wax.

Now, it is not for the wax to discover for itself how much of it is required; that is the business of Phidias. Accordingly the artificer will draw to itself as much blood as it needs. Here, however, we must pay attention and take care not unwittingly to credit the semen with reason and intelligence; if we were to do this, we would be making neither semen nor a nature, but an actual living animal. And if we retain these two principles — that of proportionate attraction and that of the non-participation of intelligence — we shall ascribe to the semen a faculty for attracting blood similar to that possessed by the lodestone for iron. Here, then, again, in the case of the semen, as in so many previous instances, we have been compelled to acknowledge some kind of attractive faculty.

And what is the semen? Clearly the active principle of the animal, the material principle being the menstrual blood. Next, seeing that the active principle employs this faculty primarily, therefore, in order that any one of the things fashioned by it may come into existence, it [the principle] must necessarily be possessed of its own faculty. How, then, was Erasistratus unaware of it, if the primary function of the semen be to draw to itself a due proportion of blood? Now, this fluid would be in due proportion if it were so thin and vaporous, that, as soon as it was drawn like dew into every part of the semen, it would everywhere cease to display its own particular character; for so the semen will easily dominate and quickly assimilate it — in fact, will use it as food. It will then, I imagine, draw to itself a second and a third quantum, and thus by feeding it acquires for itself considerable bulk and quantity. In fact, the alterative faculty has now been discovered as well, although about this also has not written a word. And, thirdly the shaping faculty will become evident, by virtue of which the semen firstly surrounds itself with a thin membrane like a kind of superficial condensation; this is what was described by Hippocrates in the sixth-day birth, which, according to his statement, fell from the singing-girl and resembled the pellicle of an egg. And following this all the other stages will occur, such as are described by him in his work “On the Child’s Nature.”

But if each of the parts formed were to remain as small as when it first came into existence, of what use would that be? They have, then, to grow. Now, how will they grow? By becoming extended in all directions and at the same time receiving nourishment. And if you will recall what I previously said about the bladder which the children blew up and rubbed, you will also understand my meaning better as expressed in what I am now about to say.

Imagine the heart to be, at the beginning, so small as to differ in no respect from a millet-seed, or, if you will, a bean; and consider how otherwise it is to become large than by being extended in all directions and acquiring nourishment throughout its whole substance, in the way that, as I showed a short while ago, the semen is nourished. But even this was unknown to Erasistratus — the man who sings the artistic skill of Nature! He imagines that animals grow like webs, ropes, sacks, or baskets, each of which has, woven on to its end or margin, other material similar to that of which it was originally composed.

But this, most sapient sir, is not growth, but genesis! For a bag, sack, garment, house, ship, or the like is said to be still coming into existence [undergoing genesis] so long as the appropriate form for the sake of which it is being constructed by the artificer is still incomplete. Then, when does it grow? Only when the basket, being complete, with a bottom, a mouth, and a belly, as it were, as well as the intermediate parts, now becomes larger in all these respects. “And how can this happen?” someone will ask. Only by our basket suddenly becoming an animal or a plant; for growth belongs to living things alone. Possibly you imagine that a house grows when it is being built, or a basket when being plated, or a garment when being woven? It is not so, however. Growth belongs to that which has already been completed in respect to its form, whereas the process by which that which is still becoming attains its form is termed not growth but genesis. That which is, grows, while that which is not, becomes.

4. This also was unknown to Erasistratus, whom nothing escaped, if his followers speak in any way truly in maintaining that he was familiar with the Peripatetic philosophers. Now, in so far as he acclaims Nature as being an artist in construction, even I recognize the Peripatetic teachings, but in other respects he does not come near them. For if anyone will make himself acquainted with the writings of Aristotle and Theophrastus, these will appear to him to consist of commentaries on the Nature-lore [physiology] of Hippocrates — according to which the principles of heat, cold, dryness and moisture act upon and are acted upon by one another, the hot principle being the most active, and the cold coming next to it in power; all this was stated in the first place by Hippocrates and secondly by Aristotle. Further, it is at once the Hippocratic and the Aristotelian teaching that the parts which receive that nourishment throughout their whole substance, and that, similarly, processes of mingling and alteration involve the entire substance. Moreover, that digestion is a species of alteration — a transmutation of the nutriment into the proper quality of the thing receiving it; that blood-production also is an alteration, and nutrition as well; that growth results from extension in all directions, combined with nutrition; that alteration is effected mainly by the warm principle, and that therefore digestion, nutrition, and the generation of the various humours, as well as the qualities of the surplus substances, result from the innate heat; all these and many other points besides in regard to the aforesaid faculties, the origin of diseases, and the discovery of remedies, were correctly stated first by Hippocrates of all writers whom we know, and were in the second place correctly expounded by Aristotle. Now, if all these views meet with the approval of the Peripatetics, as they undoubtedly do, and if none of them satisfy Erasistratus, what can the Erasistrateans possibly mean by claiming that their leader was associated with these philosophers? The fact is, they revere him as a god, and think that everything he says is true. If this be so, then we must suppose the Peripatetics to have strayed very far from truth, since they approve of none of the ideas of Erasistratus. And, indeed, the disciples of the latter produce his connection with the Peripatetics in order to furnish his Nature-lore with a respectable pedigree.

Now, let us reverse our argument and put it in a different way from that which we have just employed. For if the Peripatetics were correct in their teaching about Nature, there could be nothing more absurd than the contentions of Erasistratus. And, I will leave it to the Erasistrateans themselves to decide; they must either advance the one proposition or the other. According to the former one the Peripatetics had no accurate acquaintance with Nature, and according to the second, Erasistratus. It is my task, then, to point out the opposition between the two doctrines, and theirs to make the choice. . . .

But they certainly will not abandon their reverence for Erasistratus. Very well, then; let them stop talking about the Peripatetic philosophers. For among the numerous physiological teachings regarding the genesis and destruction of animals, their health, their diseases, and the methods of treating these, there will be found one only which is common to Erasistratus and the Peripatetics — namely, the view that Nature does everything for some purpose, and nothing in vain.

But even as regards this doctrine their agreement is only verbal; in practice Erasistratus makes havoc of it a thousand times over. For, according to him, the spleen was made for no purpose, as also the omentum; similarly, too, the arteries which are inserted into kidneys — although these are practically the largest of all those that spring from the great artery [aorta]! And to judge by the Erasistratean argument, there must be countless other useless structures; for, if he knows nothing at all about these structures, he has little more anatomical knowledge than a butcher, while, if he is acquainted with them and yet does not state their use, he clearly imagines that they were made for no purpose, like the spleen. Why, however, should I discuss these structures fully, belonging as they do to the treatise “On the Use of Parts,” which I am personally about to complete?

Let us, then, sum up again this same argument, and, having said a few words more in answer to the Erasistrateans, proceed to our next topic. The fact is, these people seem to me to have read none of Aristotle’s writings, but to have heard from others how great an authority he was on “Nature,” and that those of the Porch follow in the steps of his Nature-lore; apparently they then discovered a single one of the current ideas which is common to Aristotle and Erasistratus, and made up some story of a connection between Erasistratus and these people. That Erasistratus, however, has no share in the Nature-lore of Aristotle is shown by an enumeration of the aforesaid doctrines, which emanated first from Hippocrates, secondly from Aristotle, thirdly from the Stoics (with a single modification, namely, that for them the qualities are bodies). Perhaps, however, they will maintain that it was in the matter of logic that Erasistratus associated himself with the Peripatetic philosophers? Here they show ignorance of the fact that these philosophers never brought forward false or inconclusive arguments, while the Erasistratean books are full of them.

So perhaps somebody may already be asking, in some surprise, what possessed Erasistratus that he turned so completely from the doctrines of Hippocrates, and why it is that he takes away the attractive faculty from the biliary passages in the liver — for we have sufficiently discussed the kidneys — alleging [as the cause of bile-secretion] a favourable situation, the narrowness of vessels, and a common space into which the veins from the gateway [of the liver] conduct the unpurified blood, and from which, in the first place, the [biliary] passages take over the bile, and secondly, the [branches] of the vena cava take over the purified blood. For it would not only have done him no harm to have mentioned the idea of attraction, but he would thereby have been able to get rid of countless other disputed questions.

5. At the actual moment, however, the Erasistrateans are engaged in a considerable battle, not only with others but also amongst themselves, and so they cannot explain the passage from the first book of the “General Principles,” in which Erasistratus says, “Since there are two kinds of vessels opening at the same place, the one kind extending to the gall-bladder and the other to the vena cava, the result is that, of the nutriment carried up from the alimentary canal, that part which fits both kinds of stomata is received into both kinds of vessels, some being carried into the gall-bladder, and the rest passing over into the vena cava.” For it is difficult to say what we are to understand by the words “opening at the same place” which are written at the beginning of this passage. Either they mean there is a junction between the termination of the vein which is on the concave surface of the liver and two other vascular terminations (that of the vessel on the convex surface of the liver and that of the bile-duct), or, if not, then we must suppose that there is, as it were, a common space for all three vessels, which becomes filled from the lower vein,11 and empties itself both into the bile-duct and into the branches of the vena cava. Now, there are many difficulties in both of these explanations, but if I were to state them all, I should find myself inadvertently writing an exposition of the teaching of Erasistratus, instead of carrying out my original undertaking. There is, however, one difficulty common to both these explanations, namely, that the whole of the blood does not become purified. For it ought to fall into the bile-duct as into a kind of sieve, instead of going (running, in fact, rapidly) past it, into the larger stoma, by virtue of the impulse of anadosis.

Are these, then, the only inevitable difficulties in which the argument of Erasistratus becomes involved through his disinclination to make any use of the attractive faculty, or is it that the difficulty is greatest here, and also so obvious that even a child could not avoid seeing it?

6. And if one looks carefully into the matter one will find that even Erasistratus’ reasoning on the subject of nutrition, which he takes up in the second book of his “General Principles,” fails to escape this same difficulty. For, having conceded one premise to the principle that matter tends to fill a vacuum, as we previously showed, he was only able to draw a conclusion in the case of the veins and their contained blood. That is to say, when blood is running away through the stomata of the veins, and is being dispersed, then, since an absolutely empty space cannot result, and the veins cannot collapse (for this was what he overlooked), it was therefore shown to be necessary that the that the adjoining quantum of fluid should flow in and fill the place of the fluid evacuated. It is in this way that we may suppose the veins to be nourished; they get the benefit of the blood which they contain. But how about the nerves? For they do not also contain blood. One might obviously say that they draw their supply from the veins. But Erasistratus will not have it so. What further contrivance, then, does he suppose? He says that a nerve has within itself veins and arteries, like a rope woven by Nature out of three different strands. By means of this hypothesis he imagined that his theory would escape from the idea of attraction. For if the nerve contain within itself a blood-vessel it will no longer need the adventitious flow of other blood from the real vein lying adjacent; this fictitious vessel, perceptible only in theory, will suffice it for nourishment.

But this, again, is succeeded by another similar difficulty. For this small vessel will nourish itself, but it will not be able to nourish this adjacent simple nerve or artery, unless these possess some innate proclivity for attracting nutriment. For how could the nerve, being simple, attract its nourishment, as do the composite veins, by virtue of the tendency of a vacuum to become refilled? For, although according to Erasistratus, it contains within itself a cavity of sorts, this is not occupied with blood, but with psychic pneuma, and we are required to imagine the nutriment introduced, not into this cavity, but into the vessel containing it, whether it needs merely to be nourished, or to grow as well. How, then, are we to imagine it introduced? For this simple vessel [i.e. nerve] is so small — as are also the other two — that if you prick it at any part with the finest needle you will tear the whole three of them at once. Thus there could never be in it a perceptible space entirely empty. And an emptied space which merely existed in theory could not compel the adjacent fluid to come and fill it.

At this point, again, I should like Erasistratus himself to answer regarding this small elementary nerve, whether it is actually one and definitely continuous, or whether it consists of many small bodies, such as those assumed by Epicurus, Leucippus, and Democritus. For I see that the Erasistrateans are at variance on this subject. Some of them consider it one and continuous, for otherwise, as they say, he would not have called it simple; and some venture to resolve it into yet other elementary bodies. But if it be one and continuous, then what is evacuated from it in the so-called insensible transpiration of the physicians will leave no empty space in it; otherwise it would not be one body but many, separated by empty spaces. But if it consists of many bodies, then we have “escaped by the back door,” as the saying is, to Asclepiades, seeing that we have postulated certain inharmonious elements. Once again, then, we must call Nature “inartistic”; for this necessarily follows the assumption of such elements.

For this reason some of the Erasistrateans seem to me to have done very foolishly in reducing the simple vessels to elements such as these. Yet it makes no difference to me, since the theory of both parties regarding nutrition will be shown to be absurd. For in these minute simple vessels constituting the large perceptible nerves, it is impossible, according to the theory of those who would keep the former continuous, that any “refilling of a vacuum” should take place, since no vacuum can occur in a continuum even if anything does run away; for the parts left come together (as is seen in the case of water) and again become one, taking up the whole space of that which previously separated them. Nor will any “refilling” occur if we accept the argument of the other Erasistrateans, since none of their elements need it. For this principle only holds of things which are perceptible, and not of those which exist merely in theory; this Erasistratus expressly acknowledges, for he states that it is not a vacuum such as this, interspersed in small portions among the corpuscles, that his various treatises deal with, but a vacuum which is clear, perceptible, complete in itself, large in size, evident, or however else one cares to term it (for, what Erasistratus himself says is, that “there cannot be a perceptible space which is entirely empty”; while I, for my part, being abundantly equipped with terms which are equally elucidatory, at least in relation to the present topic of discussion, have added them as well).

Thus it seems to me better that we also should help the Erasistrateans with some contribution, since we are on the subject, and should advise those who reduce the vessel called primary and simple by Erasistratus into other elementary bodies to give up their opinion; for not only do they gain nothing by it, but they are also at variance with Erasistratus in this matter. That they gain nothing by it has been clearly demonstrated; for this hypothesis could not escape the difficulty regarding nutrition. And it also seems perfectly evident to me that this hypothesis is not in consonance with the view of Erasistratus, when it declares that what he calls simple and primary is composite, and when it destroys the principle of Nature’s artistic skill. For, if we do not grant a certain unity of substance to these simple structures as well, and if we arrive eventually at inharmonious and indivisible elements, we shall most assuredly deprive Nature of her artistic skill, as do all the physicians and philosophers who start from this hypothesis. For, according to such a hypothesis, Nature does not precede, but is secondary to the parts of the animal. Now, it is not the province of what comes secondarily, but of what pre-exists, to shape and to construct. Thus we must necessarily suppose that the faculties of Nature, by which she shapes the animal, and makes it grow and receive nourishment, are present from the seed onwards; whereas none of these inharmonious and non-partite corpuscles contains within itself any formative, incremental, nutritive, or, in a word, any artistic power; it is, by hypothesis, unimpressionable and untransformable, whereas, as we have previously shown, none of the processes mentioned takes place without transformation, alteration, and complete intermixture. And, owing to this necessity, those who belong to these sects are unable to follow out the consequences of their supposed elements, and they are all therefore forced to declare Nature devoid of art. It is not from us, however, that the Erasistrateans should have learnt this, but from those very philosophers who lay most stress on a preliminary investigation into the elements of all existing things.

Now, one can hardly be right in supposing that Erasistratus could reach such a pitch of foolishness as to be recognizing the logical consequences of this theory, and that, while assuming Nature to be artistically creative, he would at the same time break up substance into insensible, inharmonious, and untransformable elements. If, however, he will grant that there occurs in the elements a process of alteration and transformation, and that there exists in them unity and continuity, then that simple vessel of his (as he himself names it) will turn out to be single and uncompounded. And the simple vein will receive nourishment from itself, and the nerve and artery from the vein. How, and in what way? For, when we were at this point before, we drew attention to the disagreement among the Erasistrateans, and we showed that the nutrition of these simple vessels was impraticable according to the teachings of both parties, although we did not hesitate to adjudicate in their quarrel and to do Erasistratus the honour of placing him in the better sect.

Let our argument, then, be transferred again to the doctrine which assumes this elementary nerve to be a single, simple, and entirely unified structure, and let us consider how it is to be nourished; for what is discovered here will at once be found to be common also to the school of Hippocrates.

It seems to me that our enquiry can be most rigorously pursued in subjects who are suffering from illness and have become very emaciated, since in these people all parts of the body are obviously atrophied and thin, and in need of additional substance and feeding-up; for the same reason the ordinary perceptible nerve, regarding which we originally began this discussion, has become thin, and requires nourishment. Now, this contains within itself various parts, namely, a great many of these primary, invisible, minute nerves, a few simple arteries, and similarly also veins. Thus, all its elementary nerves have themselves also obviously become emaciated; for, if they had not, neither would the nerve as a whole; and of course, in such a case, the whole nerve cannot require nourishment without each of these requiring it too. Now, if on the one hand they stand in need of feeding-up, and if on the other the principle of the refilling of a vacuum can give them no help — both by reason of the difficulties previously mentioned and the actual thinness, as I shall show — we must then seek another cause for nutrition.

How is it, then, that the tendency of a vacuum to become refilled is unable to afford nourishment to one in such a condition? Because its rule is that only so much of the contiguous matter should succeed as has flowed away. Now this is sufficient for nourishment in the case of those who are in good condition, for, in them, what is presented must be equal to what has flowed away. But in the case of those who are very emaciated and who need a great restoration of nutrition, unless what was presented were many times greater than what has been emptied out, they would never be able to regain their original habit. It is clear, therefore, that these parts will have to exert a greater amount of attraction, in so far as their requirements are greater. And I fail to understand how Erasistratus does not perceive that here again he is putting the cart before the horse. Because, in the case of the sick, there must be a large amount of presentation in order to feed them up, he argues that the factor of “refilling” must play an equally large part. And how could much presentation take place if it were not preceded by an abundant delivery of nutriment? And if he calls the conveyance of food through the veins delivery, and its assumption by each of these simple and visible nerves and arteries not delivery but distribution, as some people have thought fit to name it, and then ascribes conveyance through the veins to the principle of vacuum refilling alone, let him explain to us the assumption of food by the hypothetical elements. For it has been shown that at least in relation to these there is no question of the refilling of a vacuum being in operation, and especially where the parts are very attenuated. It is worth while listening to what Erasistratus says about these cases in the second book of his “General Principles”: “In the ultimate simple [vessels], which are thin and narrow, presentation takes place from the adjacent vessels, the nutriment being attracted through the sides of the vessels and deposited in the empty spaces left by the matter which has been carried away.” Now, in this statement firstly I admit and accept the words “through the sides.” For, if the simple nerve were actually to take in the food through its mouth, it could not distribute it through its whole substance; for the mouth is dedicated to the psychic pneuma. It can, however, take it in through its sides from the adjacent simple vein. Secondly, I also accept in Erasistratus’ statement the expression which precedes “through the sides.” What does this say? “The nutriment being attracted through the sides of the vessels.” Now I, too, agree that it is attracted, but it has been previously shown that this is not through the tendency of evacuated matter to be replaced.

7. Let us, then, consider together how it is attracted. How else than in the way that iron is attracted by the lodestone, the latter having a faculty attractive of this particular quality [existing in iron]? But if the beginning of anadosis depends on the squeezing action of the stomach, and the whole movement thereafter on the peristalsis and propulsive action of the veins, as well as on the traction exerted by each of the parts which are undergoing nourishment, then we can abandon the principle of replacement of evacuated matter, as not being suitable for a man who assumes Nature to be a skilled artist; thus we shall also have avoided the contradiction of Asclepiades though we cannot refute it: for the disjunctive argument used for the purposes of demonstration is, in reality, disjunctive not of two but of three alternatives; now, if we treat the disjunction as a disjunction of two alternatives, one of the two propositions assumed in constructing our proof must be false; and if as a disjunctive of three alternatives, no conclusion will be arrived at.

8. Now Erasistratus ought not to have been ignorant of this if he had ever had anything to do with the Peripatetics — even in a dream. Nor, similarly, should he have been unacquainted with the genesis of the humours, about which, not having even anything moderately plausible to say, he thinks to deceive us by the excuse that the consideration of such matters is not the least useful. Then, in Heaven’s name, is it useful to know how food is digested in the stomach, but unnecessary to know how bile comes into existence in the veins? Are we to pay attention merely to the evacuation of this humour, and not to its genesis? As though it were not far better to prevent its excessive development from the beginning than to give ourselves all the trouble of expelling it! And it is a strange thing to be entirely unaware as to whether its genesis is to be looked on as taking place in the body, or whether it comes from without and is contained in the food. For, if it was right to raise this problem, why should we not make investigations concerning the blood as well — whether it takes its origin in the body, or is distributed through the food as is maintained by those who postulate homoeomeries? Assuredly it would be much more useful to investigate what kinds of food are suited, and what kinds unsuited, to the process of blood-production rather than to enquire into what articles of diet are easily mastered by the activity of the stomach, and what resist and contend with it. For the choice of the latter bears reference merely to digestion, while that of the former is of importance in regard to the generation of useful blood. For it is not equally important whether the aliment be imperfectly chylified in the stomach or whether it fail to be turned into useful blood. Why is Erasistratus not ashamed to distinguish all the various kinds of digestive failure and all the occasions which give rise to them, whilst in reference to the errors of blood-production he does not utter a single word — nay, not a syllable? Now, there is certainly to be found in the veins both thick and thin blood; in some people it is redder, in others yellower, in some blacker, in others more of the nature of phlegm. And one who realizes that it may smell offensively not in one way only, but in a great many different respects (which cannot be put into words, although perfectly appreciable to the senses), would, I imagine, condemn in no measured terms the carelessness of Erasistratus in omitting a consideration so essential to the practice of our art.

Thus it is clear what errors in regard to the subject of dropsies logically follow this carelessness. For, does it not show the most extreme carelessness to suppose that the blood is prevented from going forward into the liver owing to the narrowness of the passages, and that dropsy can never occur in any other way? For, to imagine that dropsy is never caused by the spleen or any other part, but always by induration of the liver,12 is the standpoint of a man whose intelligence is perfectly torpid and who is quite out of touch with things that happen every day. For, not merely once or twice, but frequently, we have observed dropsy produced by chronic haemorrhoids which have been suppressed, or which, through immoderate bleeding, have given the patient a severe chill; similarly, in women, the complete disappearance of the monthly discharge, or an undue evacuation such as is caused by violent bleeding from the womb, often provoke dropsy; and in some of them the so-called female flux ends in this disorder. I leave out of account the dropsy which begins in the flanks or in any other susceptible part; this clearly confutes Erasistratus’ assumption, although not so obviously as does that kind of dropsy which is brought about by an excessive chilling of the whole constitution; this, which is the primary reason for the occurrence of dropsy, results from a failure of blood-production, very much like the diarrhoea which follows imperfect digestion of food; certainly in this kind of dropsy neither the liver nor any other viscus becomes indurated.

The learned Erasistratus, however, overlooks — nay, despises — what neither Hippocrates, Diocles, Praxagoras, nor indeed any of the best philosophers, whether Plato, Aristotle, or Theophrastus; he passes by whole functions as though it were but a trifling and casual department of medicine which he was neglecting, without deigning to argue whether or not these authorities are right in saying that the bodily parts of all animals are governed by the Warm, the Cold, the Dry and the Moist, the one pair being active the other passive, and that among these the Warm has most power in connection with all functions, but especially with the genesis of the humours. Now, one cannot be blamed for not agreeing with all these great men, nor for imagining that one knows more than they; but not to consider such distinguished teaching worthy either of contradiction or even mention shows an extraordinary arrogance.

Now, Erasistratus is thoroughly small-minded and petty to the last degree in all his disputations — when, for instance, in his treatise “On Digestion,” he argues jealously with those who consider that this is a process of putrefaction of the food; and, in his work “On Anadosis,” with those who think that the anadosis of blood through the veins results from the contiguity of the arteries; also, in his work “On Respiration,” with those who maintain that the air is forced along by contraction. Nay, he did not even hesitate to contradict those who maintain that the urine passes into the bladder in a vaporous state, as also those who say that imbibed fluids are carried into the lung. Thus he delights to choose always the most valueless doctrines, and to spend his time more and more in contradicting these; whereas on the subject of the origin of blood (which is in no way less important than the chylification of food in the stomach) he did not deign to dispute with any of the ancients, nor did he himself venture to bring forward any other opinion, despite the fact that at the beginning of his treatise on “General Principles” he undertook to say how all the various natural functions take place, and through what parts of the animal! Now, is it possible that, when the faculty which naturally digests food is weak, the animal’s digestion fails, whereas the faculty which turns the digested food into blood cannot suffer any kind of impairment? Are we to suppose this latter faculty alone to be as tough as steel and unaffected by circumstances? Or is it that weakness of this faculty will result in something else than dropsy? The fact, therefore, that Erasistratus, in regard to other matters, did not hesitate to attack even the most trivial views, whilst in this he neither dared to contradict his predecessors nor to advance any new view of his own, proves plainly that he recognized the fallacy of his own way of thinking.

For what could a man possibly say about blood who had no use for innate heat? What could he say about yellow or black bile, or phlegm? Well, of course, he might say that the bile could come directly from without, mingled with the food! Thus Erasistratus practically says so in the following words: “It is of no value in practical medicine to find out whether fluid of this kind13 arises from the elaboration of food in the stomach-region, or whether it reaches the body because it is mixed with the food taken in from outside.” But my very good Sir, you most certainly maintain also that this humour has to be evacuated from the animal, and that it causes great pain if it be not evacuated. How, then, if you suppose that no good comes from the bile, do you venture to say that an investigation into its origin is of no value in medicine?

Well, let us suppose that it is contained in the food, and not specifically secreted in the liver (for you hold these two things possible). In this case, it will certainly make a considerable difference whether the ingested food contains a minimum or a maximum of bile; for the one kind is harmless, whereas that containing a large quantity of bile, owing to the fact that it cannot be properly purified in the liver, will result in the various affections — particularly jaundice — which Erasistratus himself states to occur where there is much bile. Surely, then, it is most essential for the physician to know in the first place, that the bile is contained in the food itself from outside, and, secondly, that for example, beet contains a great deal of bile, and bread very little, while olive oil contains most, and wine least of all, and all the other articles of diet different quantities. Would it not be absurd for any one to choose voluntarily those articles which contain more bile, rather than those containing less?

What, however, if the bile is not contained in the food, but comes into existence in the animal’s body? Will it not also be useful to know what state of the body is followed by a greater, and what by a smaller occurrence of bile? For obviously it is in our power to alter and transmute morbid states of the body — in fact, to give them a turn for the better. But if we did not know in what respect they were morbid or in what way they diverged from the normal, how should we be able to ameliorate them?

Therefore it is not useless in treatment, as Erasistratus says, to know the actual truth about the genesis of bile. Certainly it is not impossible, or even difficult to discover that the reason why honey produces yellow bile is not that it contains a large quantity of this within itself, but because it [the honey] undergoes change, becoming altered and transmuted into bile. For it would be bitter to the taste if it contained bile from the outset, and it would produce an equal quantity of bile in every person who took it. The facts, however, are not so. For in those who are in the prime of life, especially if they are warm by nature and are leading a life of toil, the honey changes entirely into yellow bile. Old people, however, it suits well enough, inasmuch as the alteration which it undergoes is not into bile, but into blood. Erasistratus, however, in addition to knowing nothing about this, shows no intelligence even in the division of his argument; he says that it is of no practical importance to investigate whether the bile is contained in the food from the beginning or comes into existence as a result of gastric digestion. He ought surely to have added something about its genesis in liver and veins, seeing that the old physicians and philosophers declare that it along with the blood is generated in these organs. But it is inevitable that people who, from the very outset, go astray, and wander from the right road, should talk such nonsense, and should, over and above this, neglect to search for the factors of most practical importance in medicine.

Having come to this poi in the argument, I should like to ask those who declare that Erasistratus was very familiar with the Peripatetics, whether they know what Aristotle stated and demonstrated with regard to our bodies being compounded out of the Warm, the Cold, the Dry and the Moist, and how he says that among these the Warm is the most active, and that those animals which are by nature warmest have abundance of blood, whilst those that are colder are entirely lacking in blood, and consequently in winter lie idle and motionless, lurking in holes like corpses. Further, the question of the colour of the blood has been dealt with not only by Aristotle but also by Plato. Now I, for my part, as I have already said, did not set before myself the task of stating what has been so well demonstrated by the Ancients, since I cannot surpass these men either in my views or in my method of giving them expression. Doctrines, however, which they either stated without demonstration, as being self-evident (since they never suspected that there could be sophists so degraded as to contemn the truth in these matters), or else which they actually omitted to mention at all — these I propose to discover and prove.

Now in reference to the genesis of the humours, I do not know that any one could add anything wiser than what has been said by Hippocrates, Aristotle, Praxagoras, Philotimus and many other among the Ancients. These men demonstrated that when the nutriment becomes altered in the veins by the innate heat, blood is produced when it is in moderation, and the other humours when it is not in proper proportion. And all the observed facts agree with this argument. Thus, those articles of food, which are by nature warmer are more productive of bile, while those which are colder produce more phlegm. Similarly of the periods of life, those which are naturally warmer tend more to bile, and the colder more to phlegm. Of occupations also, localities and seasons, and, above all, of natures themselves, the colder are more phlegmatic, and the warmer more bilious. Also cold diseases result from and warmer ones from yellow bile. There is not a single thing to be found which does not bear witness to the truth of this account. How could it be otherwise? For, seeing that every part functions in its own special way because of the manner in which the four qualities are compounded, it is absolutely necessary that the function [activity] should be either completely destroyed, or, at least hampered, by any damage to the qualities, and that thus the animal should fall ill, either as a whole, or in certain of its parts.

Also the diseases which are primary and most generic are four in number, and differ from each other in warmth, cold, dryness and moisture. Now, Erasistratus himself confesses this, albeit unintentionally; for when he says that the digestion of food becomes worse in fever, not because the innate heat has ceased to be in due proportion, as people previously supposed, but because the stomach, with its activity impaired, cannot contract and triturate as before — then, I say, one may justly ask him what it is that has impaired the activity of the stomach.

Thus, for example, when a bubo develops following an accidental wound gastric digestion does not become impaired until the patient has become fevered; neither the bubo nor the sore of itself impedes in any way or damages the activity of the stomach. But if fever occurs, the digestion at once deteriorates, and we are also right in saying that the activity of the stomach at once becomes impaired. We must add, however, by what it has been impaired. For the wound was not capable of impairing it, nor yet the bubo, for, if they had been, then they would have caused this damage before the fever as well. If it was not these that caused it, then it was the excess of heat (for these two symptoms occurred besides the bubo — an alteration in the arterial and cardiac movements and an excessive development of natural heat). Now the alteration of these movements will not merely not impair the function of the stomach in any way: it will actually prove an additional help among those animals in which, according to Erasistratus, the pneuma, which is propelled through the arteries and into the alimentary canal, is of great service in digestion; there is only left, then, the disproportionate heat to account for the damage to the gastric activity. For the pneuma is driven in more vigorously and continuously, and in greater quantity now than before; thus in this case, the animal whose digestion is promoted by pneuma will digest more, whereas the remaining factor — abnormal heat — will give them indigestion. For to say, on the one hand, that the pneuma has a certain property by virtue of which it promotes digestion, and then to say that this property disappears in cases of fever, is simply to admit the absurdity. For when they are again asked what it is that has altered the pneuma, they will only be able to reply, “the abnormal heat,” and particularly if it be the pneuma in the food canal which is in question (since this does not come in any way near the bubo).

Yet why do I mention those animals in which the property of the pneuma plays an important part, when it is possible to base one’s argument upon human beings, in whom it is either of no importance at all, or acts quite faintly and feebly? But Erasistratus himself agrees that human beings digest badly in fevers, adding as the cause that the activity of the stomach has been impaired. He cannot, however, advance any other cause of this impairment than abnormal heat. But if it is not by accident that the abnormal heat impairs this activity, but by virtue of its own essence and power, then this abnormal heat must belong to the primary diseases. But, indeed, if disproportion of heat belongs to the primary diseases, it cannot but be that a proportionate blending [eucrasia] of the qualities produces the normal activity. For a disproportionate blend [dyscrasia] can only become a cause of the primary diseases through derangement of the eucrasia. That is to say, it is because the [normal] activities arise from the eucrasia that the primary impairments of these activities necessarily arise the from derangement.

I think, then, it has been proved to the satisfaction of those who are capable of seeing logical consequences, that, even according to Erasistratus’ own argument, the cause of the normal functions is eucrasia of the Warm. Now, this being so, there is nothing further to prevent us from saying that, in the case of each function, eucrasia is followed by the more, and dyscrasia by the less favourable alternative. And, therefore, if this be the case, we must suppose blood to be the outcome of proportionate, and yellow bile of disproportionate heat. So we naturally find yellow bile appearing in greatest quantity in ourselves at the warm periods of life, in warm countries, at warm seasons of the year, and when we are in a warm condition; similarly in people of warm temperaments, and in connection with warm occupations, modes of life, or diseases.

And to be in doubt as to whether this humour has the genesis in the human body or is contained in the food is what you would expect from one who has — I will not say failed to see that, when those who are perfectly healthy have, under the compulsion of circumstances, to fast contrary to custom, their mouths become bitter and their urine bile-coloured, while they suffer from gnawing pains in the stomach — but has, as it were, just made a sudden entrance into the world, and is not yet familiar with the phenomena which occur there. Who, in fact, does not know that anything which is overcooked grows at first salt and afterwards bitter? And if you will boil honey itself, far the sweetest of all things, you can demonstrate that even this becomes quite bitter. For what may occur as a result of boiling in the case of other articles which are not warm by nature, exists naturally in honey; for this reason it does not become sweeter on being boiled, since exactly the same quantity of heat as is needed for the production of sweetness exists from beforehand in the honey. Therefore the external heat, which would be useful for insufficiently warm substances, becomes in the honey a source of damage, in fact an excess; and it is for this reason that honey, when boiled, can be demonstrated to become bitter sooner than the others. For the same reason it is easily transmuted into bile in those people who are naturally warm, or in their prime, since warm when associated with warm becomes readily changed into a disproportionate combination and turns into bile sooner than into blood. Thus we need a cold temperament and a cold period of life if we would have honey brought to the nature of blood. Therefore Hippocrates not improperly advised those who were naturally bilious not to take honey, since they were obviously of too warm a temperament. So also, not only Hippocrates, but all physicians say that honey is bad in bilious diseases but good in old age; some of them having discovered this through the indications afforded by its nature, and others simply through experiment, for the Empiricist physicians too have made precisely the same observation, namely, that honey is good for an old man and not for a young one, that it is harmful for those who are naturally bilious, and serviceable for those who are phlegmatic. In a word, in bodies which are warm either through nature, disease, time of life, season of the year, locality, or occupation, honey is productive of bile, whereas in opposite circumstances it produces blood.

But surely it is impossible that the same article of diet can produce in certain persons bile and in others blood, if it be not that the genesis of these humours is accomplished in the body. For if all articles of food contained bile from the beginning and of themselves, and did not produce it by undergoing change in the animal body, then they would produce it similarly in all bodies; the food which was bitter to the taste would, I take it, be productive of bile, while that which tasted good and sweet would not generate even the smallest quantity of bile. Moreover, not only honey but all other sweet substances are readily converted into bile in the aforesaid bodies which are warm for any of the reasons mentioned.

Well, I have somehow or other been led into this discussion — not in accordance with my plan, but compelled by the course of the argument. This subject has been treated at great length by Aristotle and Praxagoras, who have correctly expounded the view of Hippocrates and Plato.

9. For this reason the things that we have said are not to be looked upon as proofs but rather as indications of the dulness of those who think differently, and who do not even recognise what is agreed on by everyone and is a matter of daily observation. As for the scientific proofs of all this, they are to be drawn from these principles of which I have already spoken — namely, that bodies act upon and are acted upon by each other in virtue of the Warm, Cold, Moist and Dry. And if one is speaking of any activity, whether it be exercised by vein, liver, arteries, heart, alimentary canal, or any part, one will be inevitably compelled to acknowledge that this activity depends upon the way in which the four qualities are blended. Thus I should like to ask the Erasistrateans why it is that the stomach contracts upon the food, and why the veins generate blood. There is no use in recognizing the mere fact of contraction, without also knowing the cause; if we know this, we shall also be able to rectify the failures of function. “This is no concern of ours,” they say; “we do not occupy ourselves with such causes as these; they are outside the sphere of the practitioner, and belong to that of the scientific investigator.” Are you, then, going to oppose those who maintain that the cause of the function of every organ is a natural eucrasia, that the dyscrasia is itself known as a disease, and that it is certainly by this that the activity becomes impaired? Or, on the other hand, will you be convinced by the proofs which the ancient writers furnished? Or will you take a midway course between these two, neither perforce accepting these arguments as true nor contradicting them as false, but suddenly becoming sceptics — Pyrrhonists, in fact? But if you do this you will have to shelter yourselves behind the Empiricist teaching. For how are you going to be successful in treatment, if you do not understand the real essence of each disease? Why, then, did you not call yourselves Empiricists from the beginning? Why do you confuse us by announcing that you are investigating natural activities with a view to treatment? If the stomach is, in a particular case, unable to exercise its peristaltic and grinding functions, how are we going to bring it back to the normal if we do not know the cause of its disability? What I say is that we must cool the over-heated stomach and warm the warm the chilled one; so also we must moisten the one which has become dried up, and conversely; so, too, in combinations of these conditions; if the stomach becomes at the same time warmer and drier than normally, the first principle of treatment is at once to chill and moisten it; and if it become colder and moister, it must be warmed and dried; so also in other cases. But how on earth are the followers of Erasistratus going to act, confessing as they do that they make no sort of investigation into the cause of disease? For the fruit of the enquiry into activities is that by knowing the causes of the dyscrasiae one may bring them back to the normal, since it is of no use for the purposes of treatment merely to know what the activity of each organ is.

Now, it seems to me that Erasistratus is unaware of this fact also, that the actual disease is that condition of the body which, not accidentally, but primarily and of itself, impairs the normal function. How, then, is he going to diagnose or cure diseases if he is entirely ignorant of what they are, and of what kind and number? As regards the stomach, certainly, Erasistratus held that one should at least investigate how it digests the food. But why was not investigation also made as to the primary originative cause of this? And, as regards the veins and the blood, he omitted even to ask the question “how?”

Yet neither Hippocrates nor any of the other physicians or philosophers whom I mentioned a short while ago thought it right to omit this; they say that when the heat which exists naturally in every animal is well blended and moderately moist it generates blood; for this reason they also say that the blood is a virtually warm and moist humour, and similarly also that yellow bile is warm and dry, even though for the most part it appears moist. (For in them the apparently dry would seem to differ from the virtually dry.) Who does not know that brine and sea-water preserve meat and keep it uncorrupted, whilst all other water — the drinkable kind — readily spoils and rots it? And who does not know that when yellow bile is contained in large quantity in the stomach, we are troubled with an unquenchable thirst, and that when we vomit this up, we at once become much freer from thirst than if we had drunk very large quantities of fluid? Therefore this humour has been very properly termed warm, and also virtually dry. And, similarly, phlegm has been called cold and moist; for about this also clear proofs have been given by Hippocrates and the other Ancients.

Prodicus also, when in his book “On the Nature of Man” he gives the name “phlegm” to that element in the humours which has been burned or, as it were, over-roasted, while using a different terminology, still keeps to the fact just as the others do; this man’s innovations in nomenclature have also been amply done justice to by Plato. Thus, the white-coloured substance which everyone else calls phlegm, and which Prodicus calls blenna [mucus], is the well-known cold, moist humour which collects mostly in old people and in those who have been chilled in some way, and not even a lunatic could say that this was anything else than cold and moist.

If, then, there is a warm and moist humour, and another which is warm and dry, and yet another which is moist and cold, is there none which is virtually cold and dry? Is the fourth combination of temperaments, which exists in all other things, non-existent in the humours alone? No; the black bile is such a humour. This, according to intelligent physicians and philosophers, tends to be in excess, as regards seasons, mainly in the fall of the year, and, as regards ages, mainly after the prime of life. And, similarly, also they say that there are cold and dry modes of life, regions, constitutions, and diseases. Nature, they suppose, is not defective in this single combination; like the three other combinations, it extends everywhere.

At this point, also, I would gladly have been able to ask Erasistratus whether his “artistic” Nature has not constructed any organ for clearing away a humour such as this. For whilst there are two organs for the excretion of urine, and another of considerable size for that of yellow bile, does the humour which is more pernicious than these wander about persistently in the veins mingled with the blood? Yet Hippocrates says, “Dysentery is a fatal condition if it proceeds from black bile”; while that proceeding from yellow bile is by no means deadly, and most people recover from it; this proves how much more pernicious and acrid in its potentialities is black than yellow bile. Has Erasistratus, then, not read the book, “On the Nature of Man,” any more than any of the rest of Hippocrates’ writings, that he so carelessly passes over the consideration of the humours? Or, does the know it, and yet voluntarily neglect one of the finest studies in medicine? Thus he ought not to have said anything about the spleen, nor have stultified himself by holding that an artistic Nature would have prepared so large an organ for no purpose. As a matter of fact, not a matter of fact, not only Hippocrates and Plato — who are no less authorities on Nature than is Erasistratus — say that this viscus also is one of those which cleanse the blood, but there are thousands of the ancient physicians and philosophers as well who are in agreement with them. Now, all of these the high and mighty Erasistratus affected to despise, and he neither contradicted them nor even so much as mentioned their opinion. Hippocrates, indeed, says that the spleen wastes in those people in whom the body is in good condition, and all those physicians also who base themselves on experience agree with this. Again, in those cases in which the spleen is large and is increasing from internal suppuration, it destroys the body and fills it with evil humours; this again is agreed on, not only by Hippocrates, but also by Plato and many others, including the Empiric physicians. And the jaundice which occurs when the spleen is out of order is darker in colour, and the cicatrices of ulcers are dark. For, generally speaking, when the spleen is drawing the atrabiliary humour into itself to a less degree than is proper, the blood is unpurified, and the whole body takes on a bad colour. And when does it draw this in to a less degree than proper? Obviously, when it [the spleen] is in a bad condition. Thus, just as the kidneys, whose function it is to attract the urine, do this badly when they are out or order, so also the spleen, which has in itself a native power of attracting an atrabiliary quality,if it ever happens to be weak, must necessarily exercise this attraction badly, with the result that the blood becomes thicker and darker.

Now all these points, affording as they do the greatest help in the diagnosis and in the cure of disease were entirely passed over by Erasistratus, and he pretended to despise these great men — he who does not despise ordinary people, but always jealously attacks the most absurd doctrines. Hence, it was clearly because he had nothing to say against the statements made by the Ancients regarding the function and utility of the spleen, and also because he could discover nothing new himself, that he ended by saying nothing at all. I, however, for my part, have demonstrated, firstly from the causes by which everything throughout nature is governed (by the causes I mean the Warm, Cold, Dry and Moist) and secondly, from obvious bodily phenomena, that there must needs be a cold and dry humour. And having in the next place drawn attention to the fact that this humour is black bile [atrabiliary] and that the viscus which clears it away is the spleen — having pointed this out by help of as few as possible of the proofs given by ancient writers, I shall now proceed to what remains of the subject in hand.

What else, then, remains but to explain clearly what it is that happens in the generation of the humours, according to the belief and demonstration of the Ancients? This will be more clearly understood from a comparison. Imagine, then, some new wine which has been not long ago pressed from the grape, and which is fermenting and undergoing alteration through the agency of its contained heat. Imagine next two residual substances produced during this process of alteration, the one tending to be light and air-like and the other to be heavy and more of the nature of earth; of these the one, as I understand, they call the flower and the other the lees. Now you may correctly compare yellow bile to the first of these, and black bile to the latter, although these humours have not the same appearance when the animal is in normal health as that which they often show when it is not so; for then the yellow bile becomes vitelline, being so termed because it becomes like the yolk of an egg, both in colour and density; and again, even the black bile itself becomes much more malignant than when in its normal condition, but no particular name has been given to [such a condition of] the humour, except that some people have called it corrosive or acetose, because it also becomes sharp like vinegar and corrodes the animal’s body — as also the earth, if it be poured out upon it — and it produces a kind of fermentation and seething, accompanied by bubbles — an abnormal putrefaction having become added to the natural condition of the black humour. It seems to me also that most of the ancient physicians give the name black humour and not black bile to the normal portion of this humour, which is discharged from the bowel and which also frequently rises to the top [of the stomach-contents]; and they call black bile that part which, through a kind of combustion and putrefaction, has had its quality changed to acid. There is no need, however, to dispute about names, but we must realise the facts, which are as follow:—

In the genesis of blood, everything in the nutriment which belongs naturally to the thick and earth-like part of the food, and which does not take on well the alteration produced by the innate heat — all this the spleen draws into itself. On the other hand, that part of the nutriment which is roasted, so to speak, or burnt (this will be the warmest and sweetest part of it, like honey and fat), becomes yellow bile, and is cleared away through the so-called biliary vessels; now, this is thin, moist, and fluid, not like what it is when, having been roasted to an excessive degree, it becomes yellow, fiery, and thick, like the yolk of eggs; for this latter is already abnormal, while the previously mentioned state is natural. Similarly with the black humour: that which does not yet produce, as I say, this seething and fermentation on the ground, is natural, while that which has taken over this character and faculty is unnatural; it has assumed an acridity owing to the combustion caused by abnormal heat, and has practically become transformed into ashes. In somewhat the same way burned lees differ from unburned. The former is a warm substance, able to burn, dissolve, and destroy the flesh. The other kind, which has not yet undergone combustion, one may find the physicians employing for the same purposes that one uses the so-called potter’s earth and other substances which have naturally a combined drying and chilling action.

Now the vitelline bile also may take on the appearance of this combusted black bile, if ever it chance to be roasted, so to say, by fiery heat. And all the other forms of bile are produced, some the from blending of those mentioned, others being, as it were, transition-stages in the genesis of these or in their conversion into one another. And they differ in that those first mentioned are unmixed and unique, while the latter forms are diluted with various kinds of serum. And all the serums in the humours are waste substances, and the animal body needs to be purified from them. There is, however, a natural use for the humours first mentioned, both thick and thin; the blood is purified both by the spleen and by the bladder beside the liver, and a part of each of the two humours is put away, of such quantity and quality that, if it were carried all over the body, it would do a certain amount of harm. For that which is decidedly thick and earthy in nature, and has entirely escaped alteration in the liver, is drawn by the spleen into itself; the other part which is only moderately thick, after being elaborated [in the liver], is carried all over the body. For the blood in many parts of the body has need of a certain amount of thickening, as also, I take it, of the fibres which it contains. And the use of these has been discussed by Plato, and it will also be discussed by me in such of my treatises as may deal with the use of parts. And the blood also needs, not least, the yellow humour, which has as yet not reached the extreme stage of combustion; in the treatises mentioned it will be pointed out what purpose is subserved by this.

Now Nature has made no organ for clearing away phlegm, this being cold and moist, and, as it were, half-digested nutriment; such a substance, therefore, does not need to be evacuated, but remains in the body and undergoes alteration there. And perhaps one cannot properly give the name of phlegm to the surplus-substance which runs down from the brain, but one should call it mucus [blenna] or coryza — as, in fact, it is actually termed; in any case it will be pointed out, in the treatise “On the Use of Parts,” how Nature has provided for the evacuation of this substance. Further, the device provided by Nature which ensures that the phlegm which forms in the stomach and intestines may be evacuated in the most rapid and effective way possible — this also will be described in that commentary. As to that portion of the phlegm which is carried in the veins, seeing that this is of service to the animal, it requires no evacuation. Here too, then, we must pay attention and recognise that, just as in the case of each of the two kinds of bile, there is one part which is useful to the animal and in accordance with its nature, while the other part is useless and contrary to nature, so also is it with the phlegm; such of it as is sweet is useful to the animal and according to nature, while, as to such of it as has become bitter or salt, that part which is bitter is completely undigested, while that part which is salt has undergone putrefaction. And the term “complete indigestion” refers of course to the second digestion — that which takes place in the veins; it is not a failure of the first digestion — that in the alimentary canal — for it would not have become a humour at the outset if it had escaped this digestion also.

It seems to me that I have made enough reference to what has been said regarding the genesis and destruction of humours by Hippocrates, Plato, Aristotle, Praxagoras, and Diocles, and many others among the Ancients; I did not deem it right to transport the whole of their final pronouncements into this treatise. I have said only so much regarding each of the humours as will stir up the reader, unless he be absolutely inept, to make himself familiar with the writings of the Ancients, and will help him to gain more easy access to them. In another treatise I have written on the humours according to Praxagoras, to Praxagoras, son of authority Nicarchus; although this authority makes as many as ten humours, not including the blood (the blood itself being an eleventh), this is not a departure from the teaching of Hippocrates; for Praxagoras divides into species and varieties the humours which Hippocrates first mentioned, with the demonstration proper to each.

Those, then, are to be praised who explain the points which have been duly mentioned, as also those who add what has been left out; for it is not possible for the same man to make both a beginning and an end. Those, on the other hand, deserve censure who are so impatient that they will not wait to learn any of the things which have been duly mentioned, as do also those who are so ambitious that, in their lust after novel doctrines, they are always attempting some fraudulent sophistry, either purposely neglecting certain subjects, as Erasistratus does in the case of the humours, or unscrupulously attacking other people, as does this same writer, as well as many of the more recent authorities.

But let this discussion come to an end here, and I shall add in the third book all that remains.  

7. The radicles of the hepatic ducts in the liver were supposed to be the active agents in extracting bile from the blood.

8. What we now call the pulmonary artery.

9. Urine, or, more exactly, blood-serum.

10. Galen attributed to the semen what we should to the fertilized ovum.

11. The portal vein.

12. Cirrhosis of the liver.

13. Bile.

http://ebooks.adelaide.edu.au/g/galen/g15nf/book2.html

Last updated Saturday, March 1, 2014 at 20:37